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A stimulated emission pumping spectra of jet-cooled DFCO performed by Crane ét ilok; Spectrosc.

1997 183 273) has provided a great number of ro-vibrational lines up to 9000 ofrexcitation energy. By
combining a JacobiWilson (JW) approach with a Davidson scheme, we calculate the lines provided by the
experiment up to 9000 cm using an ab initio global potential energy surface (PES) developed by Kato et

al. (J. ChemPhys.1997 107, 6114). Comparisons between experimental and calculated data provide a critical
test of the quality of the PES used. We show that the variational calculated energies can be efficiently corrected
by taking into account the error observed for tNefundamental transitions; (i = 1, ..., 5) and the first
overtone 2. A detailed analysis of the eigenstates obtained by the calculation allows one to quantify the
coupling between the different modes. Such an information is essential to understand and predict the energy
flow through a DFCO molecule that is initially excited.

I. Introduction huge basis sets and very sophisticated variational methods.
. L o . However, the inaccuracy of the PES generates some errors of
The intramolecular vibrational-energy redistribution (IVR) is  ¢o\ et (ref 16) for such excitation energies. By using some
an important energy-transfer mechanism that occurs in all experimental data, it is possible to improve the PES! Ab
molecules. The IVR process can have a decisive influence onjpitio calculation of the ro-vibrational spectrum can help the
the overall_ dynamics and reactlv_lt_y_(_)f a molecular systém analysis of experimental data for at least two reasons. First, if
for a reaction to occur. The specificities of IVR pathways are o eigenstates are provided with the eigenvalues, the eigenstate
extremely diverse depending on the molecular structure of e""Chanadysis helps to understand the structure of the experimental
system. At energies just above the threshold for a given bondspectrum. When intermode couplings are efficient, it is not

dissociation, vibrational energy is required to flow between : :

vibrational modes into the reag'gi/on cogrdinate Itis thus crucial possible to _Iabel an energy level by an tnique zero-order state.

1o determine the time scale correspondin to‘ the enerav flow The analysis of the eigenstates allows to estimate the real role

through the system. It is also decisi\f)e to m(g)del this energy flow played by the dn‘_ferent normal modes n a given elgenstate.
d tg find Y 'I les that this ph 9y Th Second, a theoretical study can give some time-independent data

and to nind general rules that govern this phenomenon. e(the excitation spectrum) but also some time-dependent data

theqretical prediction of the energy flow through an initially (the energy flow through the molecule which has been initially
excited system requires the knowledge of the potential energyexcited). The assignment of the spectrum helps to understand

surface (PES.) that correctly describes the highly excite_d states.y, o dynamical behavior of an initially excited system. From the
The c_al_culat|on_ of an accurate PES. that gives a satl_sfactory experimental point of view, it is far more difficult to obtain
description of highly vibrationally excited system constitutes a directly some accurate information about the energy flow in a

real challenge. Comparisons between experimental and simu-h- : : .
. " ) ighly excited polyatomic system containing more than four
lated spectra provide a critical test of the quality of the PES atgm); poly y 9

used to describe the system and to predict its dynamical At | h g ical ies h
behavior. From the experimental point of view, different groups t least three different numerical quantum strategies have
been explored to calculate the energy of highly excited states

have developed with great success very sophisticated experi- h be | dinad f th Fi
ments to obtain fully resolved spectra of highly excited that can be located In a dense part of the spectrum. First, one

polyatomic systems such as HFGODFCO#5 CFaH 610 can mention time-dependent methods. Some energy-guided
HONO 1112CH;0H,® andCgHg, 1315 for instance’ Conseq’uently diagonalization was introduced earlier by Neuhauser as the filter
; . , : . LA P \

it is crucial to develop methods that provide the vibrational dlfagonallza}tlonl.(F[;) schené: :(n these app(;oacheg,; basE
spectrum correctly even for highly excited states. The experi- © €nergy-localized wave packets is used to window the
mental data are more accurate than calculated ones. It isSPECITUM, these wave packets being calculated from the time-
impossible to obtain a vibrational eigenvalue of a polyatomic degen&jentlpropda%an?]n of an initial wave function. -_Lh?é\ngTDH
molecule containing more than four atoms with an error smaller €0de developed by the H.-D. Meyer group in HeidelBére

than few cn? for an excitation energy of about 8000 chlt has been coupled with filtered diagonalization approaches to

. ; . . ; 30 1
is possible to calculate with a great accuracy several lines usin provide energies of . excited _ro-V|brat|onaI states? This
P g y gapproach has given highly excited state€gH,31 XFCO (X=

32,33y i
T Part of the special issue “Robert E. Wyatt Festschrift”. H O_rlD)’ .Wlt.h a satisfactory aCCL_Jracy up to 6000 and 18 000
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a propagation by using an improved relaxation metHothis provide both the eigenvalues and eigenvectors located in the
new tool has been successfully appliedHgCS3* HONO vicinity of Eer. However, computing(H) is, in general, very

and HFCG8 up to about 8000, 4000, and 6000 thof energy expensive if the density of states is high and if a curvilinear
excitation, respectively. Second, one can mention sophisticateddescription of the system is used. Wyatt had also proposed some
time-independent perturbative approaches such as the CVPTnhew original strategies to calculate specifically some eigenstates
method developed by Sibert and co-work&€r€VPT has been located in a dense part of the spectrtdt* Following these
successfully used to calculate the ro-vibrational spectrum of a works, Wang and Carrington proposed the PIST meffiod,
large variety of molecules such &CO,1"CX,,18 CH30OH,° which uses an iterative linear solver in order to compute
and CXH (X = Br,F)2021 for instance. After an efficient  approximated-transformed Lanczos vectors. Bian and Fipfer
perturbative treatment, a variational calculation is performed coupled PIST with three different techniques: phase-space
in a small basis set characterized by one or few quantum optimization discrete variable representation (PSO-D¥R),
number,N; = Ycijui, which define polyads of states that are optimal separable basis (OS®)and Wyatt preconditioning?
significantly coupled 4 denotes the occupation number of  The outline of this study is as follows. First, the numerical
normal modd, andc;; is the polyad characteristic coefficient). method used to calculate selectively a series of highly excited
CVPT provides an accurate and complete vibrational spectrum, states in DFCO is presented in Section II. It consists of a
i.e., with excitation energies, labeling of the lines in terms of Davidson scheme coupled to a JaceWiilson (JW) method,
normal mode quantum number, and line intensities. The which allows to extract eigenenergies and eigenstates in a dense
advantage of the method stems from the fact that the dimensionpart of the spectrum. In Section Ill, a detailed comparison
of the matrix to be diagonalized is smaller than in a variational between the experimental data and the numerical spectrum is
approach. A comparative study between the use of this CVPT presented. This analysis constitutes a critical test of the quality
method and a sophisticated variational method has shown thatof the PES used to describe the system. In Section IV, the
CVPT provides results with an excellent accuracy up to about intermode couplings are analyzed: their consequences on the
7000 cnt! of excitation energy in HFC@® However, this  structure of the spectrum are discussed. Section V concludes
method become less efficient and can be coupled with varia- and gives some perspectives.

tional approaches for more excited state®ouchan and co-

workerg®4% select an adapted active space in which the |, A payvidson Scheme Coupled to a JacobiWilson
Har_nlltoman is d|_agonaI|zed to provide fundam_ental and low- p,ametrization: Application to DFCO

excited combination bands for large system. This approach also

combines a variational approach with a perturbative treatment. A, The Jacobi—Wilson Parametrization of DFCO. The
Third, one can mention variational approaches. A large variety pioneer study performed by Wyatt and co-workéP8 used a

of variational methods have been developed. Wyatt performed rectilinear description of atom motion to study the energy flow
pioneer works by developing the recursive residue generatedthrough a molecule such as benz&né# or fluoroformf849
method (RRGMY1"43 The major goal of this method is the whose one CH stretch has been excited by two or three quanta

direct computation of the energies and residugs; ||y [P, of excitation. This rectilinear parametrization was adopted by
without computing the eigenstates whergis an eigenstate of ~ Wyatt and co-workers in these studies for at least two reasons.
the system ang; is an initial state chosen by the useryif= First, one of the aims of these studies was to develop a numerical

#Wrngs RRGM provides the spectrum (energies and intensities) strategy that extracts specific eigenstates and eigenvalues in a
of the studied system. This approach coupled with the Lanczossystem described by a primitive basis set containing billions of
algorithnf“ provides all the energies and residues associated tostatest! It was easier to demonstrate the efficiency of this new
the eigenvectors whose projection onto the initial statés method (the WASO methat};*546 for instance) using a
not equal to zero. Wyatt has also contributed actively to the rectilinear description because the action on a vector of the
development of a new variational method denoted wave operatorHamiltonian expressed with this set of coordinates is faster.
sorting algorithm (WASO}-45>46based on the construction of However, the use of rectilinear coordinates does not reduce the
a working active space built by the Wave operator mettiod. intermode couplings and does not make easier the extraction
The diagonalization of the Hamiltonian expressed in the working of the eigenstates of the system. Consequently, this study
active space provides with a very interesting accuracy the demonstrates the robustness and the efficiency of the WASO
eigenenergies and residues. This approach allows to use hugenethod to study large systems that are initially excited. Second,
basis sets to describe the system. Consequently, studies of largexpression of the kinetic energy operator (KEO) in terms of
systems or highly excited ones are possible with this method. curvilinear coordinates can be very intricate. The use of
WASO has provided some interesting information on the spectrarectilinear coordinates was possible to study IVR in benzene
and the dynamics in a large variety of molecules such as and fluoroform, whose one CH stretch was initially excited by
CDsH,*CF3H,*4%andCeHe*¢>0described by a set of rectilinear  two or three quanta because the energy remains mainly in the
normal modes and a primitive basis set containing billion of CH chromophore (which is constituted by the CH stretch and
states. The systematical study of large motions in highly excited a XCH bending motion) and is not significantly transferred to
systems requires the use of a curvilinear description of the the other modes. Consequently, it was only required to provide
system and a numerical method that provides energies locateca 10th order development of the poterffidP to describe

in a dense part of the spectrum. The straight Lanczos algorithmcorrectly the large-amplitude motion of the CH chromophore.
represents a very efficient and simple method to converge the A more basic description was sufficient for the other normal
low-density part of the spectrum. As the convergence becomesmodes. However, it is not possible to use a rectilinear description
very slow for denser part of the spectrum, i.e., at higher energies,to study highly excited states whose energy is very similar to
spectral transformed Lanczos algoritfsan greatly improve the dissociation energy of the studied system. Consequently, a
it. It consists of using in the Lanczos recursions another operator,curvilinear description of atom motion is inescapable to describe
f(H), whose spectrum is strongly dilated around some referencehighly excited states of DFCO whose dissociation energy is
energyEer. Few Lanczos recursions usifigl) are required to estimated to about 14 000 cr above the ground state.
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Z TABLE 1: Experimental Fundamental Vibrational
Frequencies in DFCG
o mode observed calculatedE®P — Ecalcd Ay,

_ v1 (A) (CD stretch) 2261.7 22754  —137 —1438
Rs v, (A) (CO stretch) 1796.8 1783.7 13.1 16.9
Geo v3 (A') (DCO bend) 967.9 979.8 -119 -119

v4 (A') (CF stretch) 1073.2 1066.2 7.0 7.2
Greo vs (A') (FCO bend) 657.5 653.0 45 4.6
> . v 2vg (A') (out-of-plane)  1705.8 1715.8 —10.0 -6.5
R a2 The first overtone of mode 6 is given because we focusAon
symmetry in the present study. All the quantities are expressedih cm
N D bThe PES developed by Kato et’@lhas been used to calculate these
Ry frequencies.

F

Figure 1. Polyspherical parametrization of DFC®three Jacobi 1 (column 2). Because of the existence of this Fermi resonance,

_ _ D - - a study of polyads of coupled states has been performed: a
vectors are used to describe DFG®,, o, Rs}. Each vectorR is polyad can be characterized by a quantum nurhbgequal to
parametrized by its spherical coordinatBs §;, ;) in a BF frame such v2 + (ve/2).

that GZF is taken parallel td3; andxZ" half-plane & > 0) is parallel . .

{0 Re. Consequentﬁy, the sicsgpolyspherical Eoordiﬁates)usepd to param- (2) Second’ one can alslo impose some constramts (No)

etrize DFCO are: Ry, Ry, Ry, 61, 62, ¢1). Geo and Geeo denote the 0N the maximum occupation number of each mode, whgre

barycenter of (C, O) and (F, C, O) atoms, respectively. is the larger allowed quantum number for mo@g. To
selectively study one state or a polyad of states, one can define
a more specific basis set. This allows us to use a more adapted

However, the use of developed expression of the KEO in terms working basis set. This point is important to converge with a

of curvilinear coordinates can be very difficult. It is the reason satisfactory accuracy highly excited states.

why we adopt, in this study, the JacetWilson descriptio?>*® e 156 of & global PES to describe the system requires the

which combines the simplicity of the exact KEO expressed in presence of an underlying pseudospectral schemdirett

terms of polyspherical coordinaf@g° with the efficiency of iterative methods. That is, one defines a 6D g8dsubject to
the Wilson normal-mode approachStarting from a description an energy cutoff:Qu x ... x Qg € G if Va_s < Ec. By using

with a set of six polyspherical coordinates denotggl n =1, . L i e

, . A a grid cutoff larger than the basis cutofig = 7E o (|01, ...
..., 6}, corresponding to a Jacobi vector parametrization of the . m .
sys?}em (seepFigureg 1), a set oﬂruilinegr normal modes vs) (7 > 1), one can enforce dealiasifgFor the calculations

denoted{Q., o = 1, ..., & is introduced to calculate the presented below, we have usedpwalue equal to 1.2. The
excitation v,ibrationa,l sfoectrum. Theseurvilinear normal presence of this pseudospectral scheme allows one to use any

mode coordinates are provided by the FG method of Wildon, kind of '.DES expression, wh!le some methods assume spepmc
that is: expression (Taylor expression for instance) of the potential.

However, the use of this underlying pseudospectral scheme
6 increases the CPU time and the memory required.

Q. = L(m’lqn Q) To give some information on the dimension of the working
n= basis set and grid used to calculate highly excited states in
DFCO, one can for instance consider the calculation of the state

Our corresponding basis functions are eigenfunctions of six 11,2,0,0,0,8whose excitation energy is about 9172 dnE !
. . e .- 16,V Uy Y,y " max
uncoupled harmonic oscillators describing the curvilinear normal andE#i’X“’shas been set to 4 eV (about 32 240 drand 3 eV

coordinates. This normal-mode basis can be refined by including . . . )

the diagonal anharmonicities. Specifically, the basisBéd (abqut 24180 le).’ respectlvely,' while the foIIow_mg con
; straints on the maximum occupation was adoptsg= 7, N,

thus spanned by the product functidag v, ..., v6[9, Whereu; — 10,N; = Ns = 6, Ns = 4, Ng = 14. It results in a working

corr'esponds tq Fhe occupation number. of th'e anharmonic basisB and a gridG containing about 70 000 elements and
oscillator describing the normal-mod@@. This basisB can be 200 000 points. respectively. The validity of such drastic
restricted by using several criteria: ) P ! pe Y- . y

constraints on the maximum occupation numigfor normal

dirglle)nls:igit,of Sltzrgt))gsﬁgt:gts can be introduced to limit the mode Q; is checked a posteriori by analyzing the eigenstate

..........

FE®  <E© andEM®45< the average quantum numbers givery= 3 ,, . ,2ilCuy.. 26l?

NG max (i=1, ..., 6) are calculated to estimate the real role played by
ERSMSTHEN |vy,... 0509 B (2) the different normal modes. For the calculated state lakidled

2, 0, 0, 0, 4] the following average quantum numbers have

where Ej° represents the maximum allowed total energy, been obtainedvi’=0.99,05"=2.1,05"=0.3,03'=0.2,07"
while E1345and EL34®are the energy located in modes 1, 3, = 0.01, 07" = 3.6. Large values foN, and Ng are required
4, and 5 in statéy, v, ...,vs[@ and the maximum allowed energy  because these two modes are strongly coupled by a Fermi
in these modes, respectively. This second parameter is intro-resonancei; = 2vg). This working basis set has been used to
duced because the experimental sfiddgcuses on states where  calculate all the stated, 4 — m, 0, 0, 0, 2ZnOwith m= 0, ...,
the energy is mainly located in mode 6 (out-of-plane mode) 4, which belong to a unique polyad of states characterized by
and mode 2 (CO stretch), which are strongly coupled in DFCO Ny = 4. Consequently, the constraints used are adapted to
by an efficient Fermi resonance,(= 2vg). The frequencies of  describe correctly these states. Specific basis set has been
the different vibrational modes in DFCO can be found in Table considered for the different polyads of states studied.

------
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B. Determination of the Eigenstate Based on a Davidson  nalized with respect to previous vectors and normalized is
Scheme Wyatt is one of the theoretical chemists who showed calculated:
how useful can be the Lanczos algorithm to calculate ro-
vibrational spectrum of systems described by a large basis M
because this method prevents the storage of the matrix. (1- Z U, )G
However, the efficiency of the Lanczos algorithm decreases U = m=
dramatically when the state density increases. It is the reason M+1 M
why we adopt for calculation of highly excited states in DFCO (1 — Z |u,, (0 )l
a diagonalization scheme based on the Davidson scheme =
developed recentl§£-67.68 The Davidson algorithm consists of
a preconditioned version of the Lanczos method. This scheme (v) New Davidson Iteration.The limitation of this Davidson
relies on the definition of a zero-order Hamiltonidlf, easy to procedure comes from the core memory required to store the
use and to invert. The user gives a guess veeighr and the M Davidson vectors). This imposes some constraints on the
Davidson scheme provides the enefgy and the eigenstate maximum number of Davidson iterations, denot®thay,
|yo[) which has the largest projection onta[J It has been performed. To preclude such core memory problem, a restart
shown elsewhef&68.74 that the Davidson scheme is more option is used. To profit from the initial Davidson schemNgstar
efficient if the zero-order description of the initial guess vectors eigenvectors‘PiM ( = 1, ..., Nrestan displaying the largest
is improved. This is realized by means of a prediagonalized projections onto the initial; are kept for the next Davidson
scheme described elsewh@and briefly recalled. The overall  cycle. Consequently:
basis seB is divided into two subspaceB,= P © Q, P being 1.If M + 1 < Mnax @ new Davidson iteration can begim
small enough to be directly diagonalized. Calculation of highly = M + 1, go back to (i).
excited states requires a specific prediagonalization in a subspace 2. If M + 1 = Mnay @ new Davidson cycle can begi =
P, denoted active spac®. should contain all the zero-order  Nrestart g0 back to (i).
states that play an active role during the calculation of the To give some practical information, the calculation of the
studied state or polyad of states. In this study, the active spacestate|1, 2, 0, 0, 0, &imentioned previously has required an
P is obtained by performing a preliminary Davidson calculation active space containing about 2000 states and has been
in a small basis set whose dimension is limited by using some determined by performing a preliminary Davidson calculation
drastic but realistic energy Criteriife;x, Eﬁ;g*x“*f) and some in a small basis set containing 27 000 states. The final Davidson
constraints ) on the allowedy, quantum numbers. In this ~ scheme has been applied in a basisatd a grids containing
first fast calculation, the guess vectprlis the zero-order 70 000 states and 700 000 points, respectiiélysy andNrestart
description of the studied state. This preliminary Davidson have been set to 450 and 100 in this calculation, respectively.
scheme gives an estimation of the studied eigenstate The determination of the eigenvalue (9172%¢rof excitation

|y ©%01 The zero-order states associated with the largest contri-€Nergy) and the eigenstate have required two cycles of the
butions in W}es(D are retained in thé® subspace. Then, the Davidson scheme and a total of 771 iterations of the Davidson
o b '

diagonalization of the Hamiltonian in this active space provides scheme.

gnew or_thogonal basis Sﬁ“im' =1, ....Ne} for thls_sub_space [ll. Analysis of the Accuracy of the Spectrum Obtained
constituted by the eigenstates of the Hamiltonian. The with the Global PES

eigenstatgu;[J which has the largest projection onfal] is

identified and is used as a guess vector in the following A comparison between the experimental data provided by

Davidson procedure performed in the large primitive basis set Crane et af.and the spectrum obtained by using the Davidson

B=P&Q: scheme coupled with the JacetWilson method is presented
(i) Diagonalization of the Hamiltoniarin the {uy, ..., v} in this section. From the experimental point of view, dispersed

basis set. At the beginning of the procedure, this basis containsfluorescence and stlmulaztedl émission pumping spectra of jet
only the guess vectar obtained by the prediagonalization step. ¢00led DFCO from the %7, 5'6¢, 215167 and 86° vibrational
M denotes the number of Davidson iterations performed. states ofS, have been obtained. Progressions are assigned
primarily to excitation in the FranckCondon active modes,

vs, andve. Consequently, Crane et al. gave in Table 2 of ref 4
the energies and a proposition of assignment of a series of lines

®3)

(i) Selection of the Eigenstat&™ with the largest projection
onto u;. This eigenstate is the best description of the exact

eigenstate obtained aftstiterations. The eigenvalue associated up to 9000 crmit of energy excitation. We focus in the present

W'trf_w IS der.loteoEM. . study on 48 lines of symmetm’, but a similar work can be
(iii) Calculation of the Residual &= (H — EY)W™. done for the 23 lines of symmetr’. The lines provided by
(iv) Determination of a New Vectof 1. experiment have been assigned by the following labels:

1. 1f ||g|| < ¢, we consider tha’™ is a converged eigenvector

of the Hamiltonian. It has been shown elsewfef&4that ¢ v+ (Nyg— v, + 2 (i = 1, 3, 4),Nyg =

was an excellent indicator of the accuracy of the eigenvalue 0,1,2,3,4n=0, ...,N,

and the eigenvector. K is set to 10 cm?, the eigenvalue is

obtained with an error smaller than 0.1 chwhile an e Nsvs + (Npg — My, + 2mvg (Ns = 1, 2, 3, 4) Ny =

parameter set to 100 crhgives the energy with an error of 0,1,2,3,4n=0, ...,Ny

about -2 cntL. This value has been adopted to calculate highly

excited states because the error generated by this Davidson The experimentalists considered that the spectrum is perturbed

scheme is smaller than the error generated by the inaccuracy oby a 266 ¢, ~ 2v) and 233 ¢, ~ 2v3) Fermi resonances as

the PES used to describe the system. well as a 3566 DarlingDennisson §z + vs ~ 2vg). We find
2. If ||ql] > €, a new vectouy+1 is generated. First, vector  that the more important Fermi resonance that has to be
g = (EM — H%1q is calculated. Then, a newy+; orthogo- considered is the first one that couples the out-of-plane mode
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TABLE 2: Comparison between Experimental Values When They Are Available, Fitted Valued Using the 4D Model
Hamitonian Developed by Experimentalists (Values Provides in Italics in This Table), Calculated Ones Using the 6D Global
PES Developed by Kato and Co-workers, and Corrected Ones Taking into Account the Error Provided by the Global PES for
the Energies of the Fundamental Transitions

polyad of 3/2 3V2+ Vs 31/2 + v3 31/2 + V4 3’!/2 + 2’!/5 31/2 + 31/5 31/2 + vy
E, exporfitt 5026 5681 5992 6089 6335 6990 7234
calcd 5045 5695 6016 6094 6343 6990 7266
corr 5021 5675 5976 6075 6325 6979 7224

v ..., vad (0.2,0.5,0.0, (0.2,05,0.2, (0.2,0.4,1.1, (0.2,05,0.2, (0.2,05,0.2, (0.2,05,0.2, (1.1,05,0.2,
(Vi Ve
0.2,0.0,4.8) 0.1,1.0,4.7) 0.1,0.0,4.8) 1.1,0.1,4.6) 0.1, 2.0, 4.6) 0.2,3.1,4.5) 0.1,0.0,4.3)

(0.0,0.3,0.0, (0.0,0.4,0.1, (0.0,03,5, 1.1, (0.0,0.4,00, (0.0,04,01,  (0.0,0.4,0.1, (1.0,0.3,0.1,
0.0,0.0,5.2)  0.0,1.0,5.1)  0.0,0.1,4.8) 1.0,0.0,5.2)  0.0,2.1,,5.1)  0.0,3.1,49)  0.0,0.05.2)

E; exporfit2 5174 5825 6137 6234 6475 7124 7387
calcd 5176 5823 6147 6224 6468 7111 7408
corr 5172 5824 6132 6231 6477 7115 7389

W@ (01,1201, (02,1201, (02,1211, (021202 (021202 (021202  (10,120.2,
0.1,0.0,3.4) 01,1.1,32) 0.2,0.1,3.3) 1.2,0.2,3.0)  0.2,2.1,3.0) 0.4,3.4,2.6)  0.1,0.0,3.5)

(0.0,1.1,00, (0.0,1.1,0.0, (0.0,1.1,1.1,  (0.0,1.1,00, (0.0,1.1,0.1,  (0.0,1.2,0.1,  (1.0,1.1, 0.0,
0.0,0.0,3.7)  0.0,1.0,3.7)  0.0,0.0, 3.6) 1.0,0.0,3.7)  0.0,2.0, 3.6) 0.0,3.1,3.4)  0.0,0.0,3.8)

E, exporfitt 5288 5934 6250 6344 6581 7228 7505
calcd 5267 5910 6240 6314 6552 7194 7508
corr 5291 5940 6251 6347 6588 7234 7516

W®.., v (01,21,01, (0.1,21,01, (0.1,21,11,  (0.1,21,01, (01,2101, (01,2001,  (0.9,20,0.3,
0.1,0.0,1.6)  0.1,1.0,15)  0.2,0.0, 1.6) 1.2,0.0,1.3)  0.1,2.0,1.4) 0.1,3.0,1.3)  0.2,0.2,1.7)

(0.0,2.0,02, (0.0,2.0,0.0, (0.0,2.0,1.1,  (0.0,2.0,0.1, (0.0,2.0,0.0,  (0.0,2.0,0.0, (1.0,1.9,0.1,
0.0,0.0,2.0)  0.0,1.0,2.0) 0.0, 0.0, 2.0) 1.0,0.0,2.0)  0.0,2.0,1.9) 0.0,3.0,1.8)  0.0,0.0,2.1)

E: exporfit2 5348 5993 6309 6401 6638 7283 7571
calcd 5320 5963 6293 6371 6606 7249 7564
corr 5343 5988 6303 6394 6632 7276 7575

W®.., v (01,21,01, (01,2001, (0.1,20,10,  (0.1,1.9,01, (0.1,19,01, (01,1801,  (0.9,2.1,0.1,
0.1,0.0,1.7)  0.1,1.0,1.9)  0.2,0.0,1.7) 1.1,0.0,2.0)  0.1,2.0,2.1) 0.1,3.0,2.2)  0.2,0.0,1.7)

(0.0,25,00, (0.0,2500, (00,2511,  (0.0,2.4,00, (0.0,2.4,00,  (0.0,23,00, (1.0,2.6,0.0,
0.0,0.0,0.9)  0.0,1.0,1.0) 0.0, 0.0, 0.9) 1.0,0.0,1.0)  0.0,2.0,1.2) 0.0,3.0,1.3)  0.0,0.0,0.7)

aWhen experimental values are not available, the values provided by the very simple experimentalist modelization developed in ref 4 and
summarized in Section Il (near eq 4) are giveQalculated values using the global PBS¢ Corrected values using eq $Average quantum
number obtained either with the global PES and the Davidson scheme or in italics with the 4D model Hamiltonian developed by Moore and
co-workerst

vg with the CO stretchr,. Consequently, a study of polyads of Table 2 and Figure 4 of Section IV, we compare the eigenstates
coupled states has been performed: a polyad can be charactembtained either by this modelization (values provided in italics
ized by the quantum numbébe. The 48 energies observed by in Table 2 and Figure 4) or by a 6D variational calculation. We
the experiment belong to 30 different polyads of states. We havecan now discuss the accuracy of the spectrum provided by the
calculated all the energies and the eigenstates that belong tqylobal six-dimensional PES developed by Kato and co-work-
these 30 polyads of states: 84 eigenstates have been calculate@drs?> This PES includes the dissociation pathway and was
The calculation of all these states will be used in Section IV to constructed with the use of about 4000 ab initio potential
a.nalyze the structure of the SpeCtrUm and the efﬁciency of the energies Computed at the (RHF)/MPZ level. The aim of such a
different resonances. sophisticated PES is to describe highly excited states of HFCO
In the sophisticated and detailed experimental study per- oy DFCO molecules. This PES has not been fitted to reproduce
formed by Crane et af.a fit of the experimental data has been ¢ spectrum. It is the reason why it is crucial to compare the
proposed. First, they trlled to fit the spectrum by using a standard experimental and calculated data to quantify the quality of this
Dunham-type expression: global PES. Squares in Figure 2 reproduce the difference
6 6 6 between the numerical spectrum obtained with this PES and
_ the experimental data. One can mention that the error is mainly
Bvy, - 06) = ; oty ; Z. Xt ) generated by the inaccuracy of the PES because the error caused
: by the Davidson scheme and the finite dimension of the working

This basic approach was not sufficient to fit all the experi- basis set is significantly smaller (few cf) for highly excited

mental data up to 9000 crth Consequently, they have included ~States. What is the major origin of the difference between
in the fit three coupling constantskyes, koss andkssgs This experimental and calculated spectra? Table 1 provides the error

very simple model Hamiltonian was diagonalized for each generated by the PES for the fundamental transitions foAthe
polyad of states coupled by these three constants. The determodes and for the first overtone for th& out-of-plane mode.
mination of these 3 force constartss, Kozs andkssegs the six What is the consequence of this error (reproduced in column 4
wi (i =1, ..., 6) and the 1; constants was based on the use of Table 1) on the calculation of highly excited states? To
of a simulated annealing optimization routiheFigure 2 answer to this question, a corrected value of the energy
represents the error between the fitted and the experimentalassociated to a given eigenstaf¥(= > ... ,sCor,...s6/ V1, -+ V60
spectrum (circles in Figure 2): the agreement is excellent. In has been estimated:
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Figure 3. Average quantum number for modes 1, 3, 4, and 5 for all

Figure 2. Difference between experimental data with the fitted one
the calculated states.

by Crane et al. (circles) or using the variational calculation using the
Kato’s PES (squares) or the corrected energy according to eq 5. All existence of resonances that might couple the out-of-plane mode
the energies are expressed iném with in-plane modes. The experiments seem to predict that the
IVR dynamics in DFCO is very different from the very strong
mode-specific IVR dynamic in HFCO. In particular, the
quasistability of large amplitude out-of-plane vibrations in
HFCO is destroyed in DFCO, probably due to a 266 resonance,
which is not efficient in HFCO. Our group has investigated the
IVR in DFCO®3 whose out-of-plane is highly excited by using
the MCTDH codé*26 to propagate the initial wave packet. In
agreement with the experimental findings, our study proves that
the IVR dynamics of DFCO are in marked contrast to the
TheAw; (i = 1, ..., 6) are fitted to obtaif®" = E&*P for the A dynamic of HFCO. Above all, the IVR in DFCO is affected by
fundamental transitions and for the first out-of-plane overtone. the presence of the 266 resonance. This resonance seems to be
The values ofAv; (i = 1, ..., 6) are provided in column 5 of  the main reason that explains why the experimental spectra is
Table 1. Columns 4 and 5 are different because of the existenceperturbed and more “congested” above the dissociation. How-
of Fermi resonances, which efficiently couple modes even for ever, the theoretical study shows that the CO stretch itself (mode
these low excited states. 2) is not coupled to the other in-plane modes. Consequently,
Stars in Figure 2 provides the corrected values of the energiesthe system remains mode specific. The present analysis of the
up to 9000 cm. This figure shows that there is a satisfactory Spectrum up to 9000 cm will help to understand the very
agreement between the experimental data and the corrected one€riginal dynamical behavior of DFCO. First, the role played
This very simple approach allows to improve the energies by the modes 1, 3, 4, and 5 has been quantified: for the 84
provided by the variational calculation and requires only the bands calculated, the average quantum numb®ré = 1, 3,
knowledge of the fundament&l' transition and the first out- 4, 5) have been calculated and represented in Figure 3. It is
of-plane overtone. Consequently, this approach is predictive. remarkable to note that the average quantum numBéis
This section establishes that the PES developed by Kato andvery similar to the integer quantum numbegiproposed in the
co-workers gives a very good description of the intermode |abel, e, o =0orlfori=1,3 4andi' =0,1,2 3 4
couplings in this molecule even for highly excited-state while That establishes that there is no efficient coupling between these
the spectrum is strongly perturbed by resonances. The error onmodes and modes 2 and 6. It shows that modes 2 and 6 are
highly excited states can be significantly reduced by taking into really decoupled to these modes. The experimental $fudy
account the error generated on the calculation of the fundamentalpredicts that 233 and 3566 resonances should be also efficient.
A transitions and the first out-of-plane overtone. In fact, the effect of these resonances is not significative. For
, instance, thev§’ is very small (less than 0.3) in thew,
IV. Analysis of the Structure of the Spectrum Generated overtonesii= 1, ..., 5). Figure 4 represents the general structure
by an Efficient Fermi Resonance of a polyad of states characterized bys = 1, 2, 3, 4. We
This section is dedicated to the analysis of the structure of have reproduced in Figure 4 the values obtained for the corrected
DFCO spectrum and the determination of the role played by energies and for the couple of average quantum numbéts (
the different resonances. In fact, one of the aims of the »{") for the polyads of states that are generated by the mixing
experimental study was to compare the dynamical behaviorsof the following (N2 + 1) zero-order statesf |(N2s — n)v, +
of HFCO and DFCO. HFCO is an excellent prototype to study 2me@ n=0, ...,Nz¢} . The values written in italics are provided
mode specificity in unimolecular dissociation because the out- by the 4D very simple modelization developed by experimental-
of-plane modeg) is weakly coupled to the reaction coordinate ists. First, in agreement with experimental predictions, an
that lies entirely in the molecular plane. HFCO has been the increase of the coupling between modes 2 and 6 is observed
subject of intensive experimental studies conducted by Moore when the excitation energy increases. While the weight of mode
and co-workers’%77and numerical simulatior@:74.75.78.7The 6 is larger in the low-energy bands of a given polyad, an intense
aim of these studies was to analyze the energy flow through amixing of modes 2 and 6 is predicted in the energy levEls (
HFCO molecule whose out-of-plane was highly excited. Then, E,) for Nog = 3 and energy levelsH;, Es) for N = 4. It is
Moore and co-workef$ focus on DFCO because of the very interesting to be able to label these bands by the average

(1) First, the average quantum number in m&ggiven by

..........

played by the different normal mod€} in |W0
(2) Second, the corrected value of the energy is given by:

6
Ecorr= Ecalcd+ A’Vil/iav

®)
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4 0r{Nss + |(Ns — N2 + 2nwg[3, N =0, ..., Nog} with Ns = 1, 2, 3. mode 5 is excited by 3 quanta. Figuresand Table 2 focus

on theNys = 3 polyad, but similar trends are observed for the
guantum number because it is totally impossible to identify Other polyadsNzs = 1, 2, 3, 4). This analysis demonstrates
theses bands by a unique zero-order state. We can now compar80W the coupling scheme between modes 2 and 6 is independant
the values provided by the variational calculations and the 4D Of the excitation of the other modes. Its explains why the IVR
model proposed by experimentalists. The very original evolution Predicted in DFCO is mode selective: the energy initially
of »2(i = 2, 6) in a given polyad is not exactly reproduced by deposited in mode 6 is transferred in a reversible way |n_modes
the 4D model, which totally neglects mode 1 and 4. The 6D 2 and 6. However, the transfer to mode 1, 3, 4, and 5 is slow
variational calculation shows the role played by the in-plane Pecause the couplings are not efficient.
modes: small but not totally negligible. They are responsible
of the evolution of thev?’ (i = 2, 6) in a given polyad. We
focus now on the polyads generated by the mixing of states First, this study has shown that the Davidson scheme coupled
such thaf |v; + (N2 — n)v2 + 29, n = 0, ..., Nag} for Nog to the JW parametrization and a specific prediagonalization step
=3 andi = 1, 3, 4 or{|Nsvs + (Nzg — n)v, + 2nveld, n = 0, is able to provide highly excited states even when strong and
..» Nog} for Ns = 1, 2, 3 andNps = 3. How modified is the efficient Fermi resonances exist. Up to now, this method has
structure of the spectrum of these polyads of states by the factbeen used either in HFCO where the intermode couplings are
that an in-plane mode 1 or 3 or 4 or 5 is excited? Figure 5 small or in HCO where the state density is smaller. Second,
provides the splittings As1, Az, Ass defined in Figure 4)  the comparison between the experimental and calculated spectra
calculated for the polyads of states characterizedNgy= 3. has established the great quality of the global PES developed
This figure shows that the splittings are not significantly affected by Kato and co-workers. We show also that the energies
by the excitation of modes 1, 3, 4, 5. The average quantum provided by this PES can be easily corrected by taking into
numbers in modes 2 and 6 are reproduced in Figures 6 and 7account the error observed for the fundamental frequencies. The
for these bands. Table 2 gives the energies (experimental onesPES, used in a recent dynamical stdéyeproduces correctly
variational ones and corrected ones) and the average quantunthe intermode couplings in DFCO. Third, the analysis of the
numbers ¢35, ..., v§") obtained either by the 6D variational eigenstates up to 9000 ciof excitation has demonstrated that
calculation or by the 4D modelization proposed by Moore and the modes 2 and 6 are decoupled to the other modes, while the

V. Conclusions
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experimental studies suggest that some other resonances might (32) Pasin, G.; Gatti, F.; lung, C.; Meyer, H.-D. Chem. Phys2006

be efficient to couple mode 2 with mode 3, for instance. |
fact, such a Fermi resonance is not efficient up to 9000cm
This analysis helps to understand the IVR study performed

n 124 194304.

(33) Pasin, G.; Gatti, F.; lung, C.; Meyer, H.-D. Chem. Phys2007,
126, 024302.
(34) Meyer, H.-D.; Queg, F. L.; Leonard, C.; Gatti, FChem. Phys.

recently32 Finally, we are planning to implement the dipole 2006 329 179-192.

momenta as well as the overall rotation of the molecule to carry
out simulations in the presence of a time-dependent field. We

(35) Richter, F.; Lenard, C.; Ques, F. L.; Gatti, F.; Meyer, H.-DJ.
em. Physin press.
(36) Pasin, G.; Lenard, C.; QuUe, F. L.; Gatti, F.; lung, C.; Meyer,

will compare the dynamical behavior of HFCO and DFCO H.-D. 2007, to be published.

excited by a laser pulse and will estimate the influence of this

Fermi resonance to the dynamical behavior of DFCO.
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