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A stimulated emission pumping spectra of jet-cooled DFCO performed by Crane et al. (J. Mol. Spectrosc.
1997, 183, 273) has provided a great number of ro-vibrational lines up to 9000 cm-1 of excitation energy. By
combining a Jacobi-Wilson (JW) approach with a Davidson scheme, we calculate the lines provided by the
experiment up to 9000 cm-1 using an ab initio global potential energy surface (PES) developed by Kato et
al. (J. Chem. Phys.1997, 107, 6114). Comparisons between experimental and calculated data provide a critical
test of the quality of the PES used. We show that the variational calculated energies can be efficiently corrected
by taking into account the error observed for theA′ fundamental transitionsνi (i ) 1, ..., 5) and the first
overtone 2ν6. A detailed analysis of the eigenstates obtained by the calculation allows one to quantify the
coupling between the different modes. Such an information is essential to understand and predict the energy
flow through a DFCO molecule that is initially excited.

I. Introduction

The intramolecular vibrational-energy redistribution (IVR) is
an important energy-transfer mechanism that occurs in all
molecules. The IVR process can have a decisive influence on
the overall dynamics and reactivity of a molecular system1,2

for a reaction to occur. The specificities of IVR pathways are
extremely diverse depending on the molecular structure of each
system. At energies just above the threshold for a given bond
dissociation, vibrational energy is required to flow between
vibrational modes into the reaction coordinate. It is thus crucial
to determine the time scale corresponding to the energy flow
through the system. It is also decisive to model this energy flow
and to find general rules that govern this phenomenon. The
theoretical prediction of the energy flow through an initially
excited system requires the knowledge of the potential energy
surface (PES) that correctly describes the highly excited states.
The calculation of an accurate PES that gives a satisfactory
description of highly vibrationally excited system constitutes a
real challenge. Comparisons between experimental and simu-
lated spectra provide a critical test of the quality of the PES
used to describe the system and to predict its dynamical
behavior. From the experimental point of view, different groups
have developed with great success very sophisticated experi-
ments to obtain fully resolved spectra of highly excited
polyatomic systems such as HFCO,3 DFCO,4,5 CF3H,6-10

HONO,11,12CH3OH,8 andC6H6,13-15 for instance. Consequently,
it is crucial to develop methods that provide the vibrational
spectrum correctly even for highly excited states. The experi-
mental data are more accurate than calculated ones. It is
impossible to obtain a vibrational eigenvalue of a polyatomic
molecule containing more than four atoms with an error smaller
than few cm-1 for an excitation energy of about 8000 cm-1. It
is possible to calculate with a great accuracy several lines using

huge basis sets and very sophisticated variational methods.
However, the inaccuracy of the PES generates some errors of
few cm-1 (ref 16) for such excitation energies. By using some
experimental data, it is possible to improve the PES.17-21 Ab
initio calculation of the ro-vibrational spectrum can help the
analysis of experimental data for at least two reasons. First, if
the eigenstates are provided with the eigenvalues, the eigenstate
analysis helps to understand the structure of the experimental
spectrum. When intermode couplings are efficient, it is not
possible to label an energy level by an unique zero-order state.
The analysis of the eigenstates allows to estimate the real role
played by the different normal modes in a given eigenstate.
Second, a theoretical study can give some time-independent data
(the excitation spectrum) but also some time-dependent data
(the energy flow through the molecule which has been initially
excited). The assignment of the spectrum helps to understand
the dynamical behavior of an initially excited system. From the
experimental point of view, it is far more difficult to obtain
directly some accurate information about the energy flow in a
highly excited polyatomic system containing more than four
atoms.

At least three different numerical quantum strategies have
been explored to calculate the energy of highly excited states
that can be located in a dense part of the spectrum. First, one
can mention time-dependent methods. Some energy-guided
diagonalization was introduced earlier by Neuhauser as the filter
diagonalization (FD) scheme.22,23 In these approaches, a basis
of energy-localized wave packets is used to window the
spectrum, these wave packets being calculated from the time-
dependent propagation of an initial wave function. The MCTDH
code developed by the H.-D. Meyer group in Heidelberg24-26

has been coupled with filtered diagonalization approaches to
provide energies of excited ro-vibrational states.27-30 This
approach has given highly excited states inCF3H,31 XFCO (Xd
H or D),32,33with a satisfactory accuracy up to 6000 and 18 000
cm-1 of excitation energy, respectively. It has been also shown
recently that the MCTDH code can provide eigenstates from
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a propagation by using an improved relaxation method.27 This
new tool has been successfully applied toH2CS,34 HONO,35

and HFCO36 up to about 8000, 4000, and 6000 cm-1 of energy
excitation, respectively. Second, one can mention sophisticated
time-independent perturbative approaches such as the CVPT
method developed by Sibert and co-workers.37 CVPT has been
successfully used to calculate the ro-vibrational spectrum of a
large variety of molecules such asH2CO,17CX4,18 CH3OH,19

and CX3H (X ) Br,F),20,21 for instance. After an efficient
perturbative treatment, a variational calculation is performed
in a small basis set characterized by one or few quantum
number,Nj ) ∑ci,jVi, which define polyads of states that are
significantly coupled (Vi denotes the occupation number of
normal modei, andci,j is the polyad characteristic coefficient).
CVPT provides an accurate and complete vibrational spectrum,
i.e., with excitation energies, labeling of the lines in terms of
normal mode quantum number, and line intensities. The
advantage of the method stems from the fact that the dimension
of the matrix to be diagonalized is smaller than in a variational
approach. A comparative study between the use of this CVPT
method and a sophisticated variational method has shown that
CVPT provides results with an excellent accuracy up to about
7000 cm-1 of excitation energy in HFCO.16 However, this
method become less efficient and can be coupled with varia-
tional approaches for more excited states.16 Pouchan and co-
workers38-40 select an adapted active space in which the
Hamiltonian is diagonalized to provide fundamental and low-
excited combination bands for large system. This approach also
combines a variational approach with a perturbative treatment.
Third, one can mention variational approaches. A large variety
of variational methods have been developed. Wyatt performed
pioneer works by developing the recursive residue generated
method (RRGM).41-43 The major goal of this method is the
direct computation of the energies and residues,rR ) |〈ψi|ψR〉|2,
without computing the eigenstates whereψR is an eigenstate of
the system andψi is an initial state chosen by the user. Ifψi )
µ̂Ψfund, RRGM provides the spectrum (energies and intensities)
of the studied system. This approach coupled with the Lanczos
algorithm44 provides all the energies and residues associated to
the eigenvectors whose projection onto the initial stateψi is
not equal to zero. Wyatt has also contributed actively to the
development of a new variational method denoted wave operator
sorting algorithm (WASO)41,45,46based on the construction of
a working active space built by the Wave operator method.47

The diagonalization of the Hamiltonian expressed in the working
active space provides with a very interesting accuracy the
eigenenergies and residues. This approach allows to use huge
basis sets to describe the system. Consequently, studies of large
systems or highly excited ones are possible with this method.
WASO has provided some interesting information on the spectra
and the dynamics in a large variety of molecules such as
CD3H,45CF3H,48,49andC6H6

46,50described by a set of rectilinear
normal modes and a primitive basis set containing billion of
states. The systematical study of large motions in highly excited
systems requires the use of a curvilinear description of the
system and a numerical method that provides energies located
in a dense part of the spectrum. The straight Lanczos algorithm
represents a very efficient and simple method to converge the
low-density part of the spectrum. As the convergence becomes
very slow for denser part of the spectrum, i.e., at higher energies,
spectral transformed Lanczos algorithms51 can greatly improve
it. It consists of using in the Lanczos recursions another operator,
f(Ĥ), whose spectrum is strongly dilated around some reference
energyEref. Few Lanczos recursions usingf(Ĥ) are required to

provide both the eigenvalues and eigenvectors located in the
vicinity of Eref. However, computingf(Ĥ) is, in general, very
expensive if the density of states is high and if a curvilinear
description of the system is used. Wyatt had also proposed some
new original strategies to calculate specifically some eigenstates
located in a dense part of the spectrum.52-54 Following these
works, Wang and Carrington proposed the PIST method,55-57

which uses an iterative linear solver in order to compute
approximated-transformed Lanczos vectors. Bian and Poirier58,59

coupled PIST with three different techniques: phase-space
optimization discrete variable representation (PSO-DVR),60

optimal separable basis (OSB),61 and Wyatt preconditioning.52

The outline of this study is as follows. First, the numerical
method used to calculate selectively a series of highly excited
states in DFCO is presented in Section II. It consists of a
Davidson scheme coupled to a Jacobi-Wilson (JW) method,
which allows to extract eigenenergies and eigenstates in a dense
part of the spectrum. In Section III, a detailed comparison
between the experimental data and the numerical spectrum is
presented. This analysis constitutes a critical test of the quality
of the PES used to describe the system. In Section IV, the
intermode couplings are analyzed: their consequences on the
structure of the spectrum are discussed. Section V concludes
and gives some perspectives.

II. A Davidson Scheme Coupled to a Jacobi-Wilson
Parametrization: Application to DFCO

A. The Jacobi-Wilson Parametrization of DFCO. The
pioneer study performed by Wyatt and co-workers41,50 used a
rectilinear description of atom motion to study the energy flow
through a molecule such as benzene62-64 or fluoroform48,49

whose one CH stretch has been excited by two or three quanta
of excitation. This rectilinear parametrization was adopted by
Wyatt and co-workers in these studies for at least two reasons.
First, one of the aims of these studies was to develop a numerical
strategy that extracts specific eigenstates and eigenvalues in a
system described by a primitive basis set containing billions of
states.41 It was easier to demonstrate the efficiency of this new
method (the WASO method,41,45,46 for instance) using a
rectilinear description because the action on a vector of the
Hamiltonian expressed with this set of coordinates is faster.
However, the use of rectilinear coordinates does not reduce the
intermode couplings and does not make easier the extraction
of the eigenstates of the system. Consequently, this study
demonstrates the robustness and the efficiency of the WASO
method to study large systems that are initially excited. Second,
expression of the kinetic energy operator (KEO) in terms of
curvilinear coordinates can be very intricate. The use of
rectilinear coordinates was possible to study IVR in benzene
and fluoroform, whose one CH stretch was initially excited by
two or three quanta because the energy remains mainly in the
CH chromophore (which is constituted by the CH stretch and
a XCH bending motion) and is not significantly transferred to
the other modes. Consequently, it was only required to provide
a 10th order development of the potential48,49 to describe
correctly the large-amplitude motion of the CH chromophore.
A more basic description was sufficient for the other normal
modes. However, it is not possible to use a rectilinear description
to study highly excited states whose energy is very similar to
the dissociation energy of the studied system. Consequently, a
curvilinear description of atom motion is inescapable to describe
highly excited states of DFCO whose dissociation energy is
estimated to about 14 000 cm-1 above the ground state.
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However, the use of developed expression of the KEO in terms
of curvilinear coordinates can be very difficult. It is the reason
why we adopt, in this study, the Jacobi-Wilson description,65-68

which combines the simplicity of the exact KEO expressed in
terms of polyspherical coordinates69,70 with the efficiency of
the Wilson normal-mode approach.71 Starting from a description
with a set of six polyspherical coordinates denoted{qn, n ) 1,
..., 6}, corresponding to a Jacobi vector parametrization of the
system (see Figure 1), a set ofcurVilinear normal modes,
denoted{QR, R ) 1, ..., 6} is introduced to calculate the
excitation vibrational spectrum. ThesecurVilinear normal
mode coordinates are provided by the FG method of Wilson,71

that is:

Our corresponding basis functions are eigenfunctions of six
uncoupled harmonic oscillators describing the curvilinear normal
coordinates. This normal-mode basis can be refined by including
the diagonal anharmonicities. Specifically, the basis setB is
thus spanned by the product functions|V1, V2, ..., V6〉0, whereVi

corresponds to the occupation number of the anharmonic
oscillator describing the normal-modeQi. This basisB can be
restricted by using several criteria:

(1) First, energy cutoffs can be introduced to limit the
dimension of the basis setB:

where Emax
tot represents the maximum allowed total energy,

while E1,3,4,5andEmax
1,3,4,5 are the energy located in modes 1, 3,

4, and 5 in state|V1, V2, ...,V6〉0 and the maximum allowed energy
in these modes, respectively. This second parameter is intro-
duced because the experimental study4,5 focuses on states where
the energy is mainly located in mode 6 (out-of-plane mode)
and mode 2 (CO stretch), which are strongly coupled in DFCO
by an efficient Fermi resonance (ν2 = 2ν6). The frequencies of
the different vibrational modes in DFCO can be found in Table

1 (column 2). Because of the existence of this Fermi resonance,
a study of polyads of coupled states has been performed: a
polyad can be characterized by a quantum numberN26 equal to
V2 + (V6/2).

(2) Second, one can also impose some constraints (nR e NR)
on the maximum occupation number of each mode, wherenR
is the larger allowed quantum number for modeQR. To
selectively study one state or a polyad of states, one can define
a more specific basis set. This allows us to use a more adapted
working basis set. This point is important to converge with a
satisfactory accuracy highly excited states.

The use of a global PES to describe the system requires the
presence of an underlying pseudospectral scheme ofdirect
iterative methods. That is, one defines a 6D grid,G, subject to
an energy cutoff:Q1a × ... × Q6f ∈ G if Va,...,f e EG. By using
a grid cutoff larger than the basis cutoff,EG ) ηEmax

tot (|V1, ...,
V6〉) (η > 1), one can enforce dealiasing.72 For the calculations
presented below, we have used anη value equal to 1.2. The
presence of this pseudospectral scheme allows one to use any
kind of PES expression, while some methods assume specific
expression (Taylor expression for instance) of the potential.
However, the use of this underlying pseudospectral scheme
increases the CPU time and the memory required.

To give some information on the dimension of the working
basis set and grid used to calculate highly excited states in
DFCO, one can for instance consider the calculation of the state
|1,2,0,0,0,4〉 whose excitation energy is about 9172 cm-1. Emax

tot

andEmax
1,3,4,5has been set to 4 eV (about 32 240 cm-1) and 3 eV

(about 24 180 cm-1), respectively, while the following con-
straints on the maximum occupation was adopted:N1 ) 7, N2

) 10, N3 ) N4 ) 6, N5 ) 4, N6 ) 14. It results in a working
basisB and a gridG containing about 70 000 elements and
700 000 points, respectively. The validity of such drastic
constraints on the maximum occupation numberNi for normal
modeQi is checked a posteriori by analyzing the eigenstate
obtained. For each eigenstate (|Ψ〉 ) ∑V1,...,V6cV1,...,V6|V1, ...,V6〉),
the average quantum numbers given byV i

av ) ∑V1,...,V6Vi|cV1,...,V6|2
(i ) 1, ..., 6) are calculated to estimate the real role played by
the different normal modes. For the calculated state labeled|1,
2, 0, 0, 0, 4〉, the following average quantum numbers have
been obtained:V1

av ) 0.99,V2
av ) 2.1,V3

av ) 0.3,V4
av ) 0.2,V5

av

) 0.01, V1
av ) 3.6. Large values forN2 and N6 are required

because these two modes are strongly coupled by a Fermi
resonance (ν2 = 2ν6). This working basis set has been used to
calculate all the states|1, 4 - m, 0, 0, 0, 2m〉 with m ) 0, ...,
4, which belong to a unique polyad of states characterized by
N26 ) 4. Consequently, the constraints used are adapted to
describe correctly these states. Specific basis set has been
considered for the different polyads of states studied.

Figure 1. Polyspherical parametrization of DFCO:69 three Jacobi

vectors are used to describe DFCO{RB1,
D
f
R2

, RB3}. Each vector,RBi is

parametrized by its spherical coordinates (Ri, ∂i, θi) in a BF frame such
thatGzBF is taken parallel toRB3 andxzBF half-plane (x > 0) is parallel
to RB2. Consequently, the six polyspherical coordinates used to param-
etrize DFCO are: (R1, R2, R3, θ1, θ2, æ1). GCO and GFCO denote the
barycenter of (C, O) and (F, C, O) atoms, respectively.

QR ) ∑
n)1

6

LRn
-1qn (1)

If EV1,...,V6

0 e Emax
tot andE1,3,4,5e

Emax
1,3,4,5THEN |V1,...,V6〉

0∈ B (2)

TABLE 1: Experimental Fundamental Vibrational
Frequencies in DFCOa

mode observed calculatedb Eexp - Ecalcd ∆νi

ν1 (A′) (CD stretch) 2261.7 2275.4 -13.7 -14.8
ν2 (A′) (CO stretch) 1796.8 1783.7 13.1 16.9
ν3 (A′) (DCO bend) 967.9 979.8 -11.9 -11.9
ν4 (A′) (CF stretch) 1073.2 1066.2 7.0 7.2
ν5 (A′) (FCO bend) 657.5 653.0 4.5 4.6
2ν6 (A′) (out-of-plane) 1705.8 1715.8 -10.0 -6.5

a The first overtone of mode 6 is given because we focus onA′
symmetry in the present study. All the quantities are expressed in cm-1.
b The PES developed by Kato et al.75 has been used to calculate these
frequencies.

10428 J. Phys. Chem. A, Vol. 111, No. 41, 2007 Iung and Pasin



B. Determination of the Eigenstate Based on a Davidson
Scheme.Wyatt is one of the theoretical chemists who showed
how useful can be the Lanczos algorithm to calculate ro-
vibrational spectrum of systems described by a large basis
because this method prevents the storage of the matrix.
However, the efficiency of the Lanczos algorithm decreases
dramatically when the state density increases. It is the reason
why we adopt for calculation of highly excited states in DFCO
a diagonalization scheme based on the Davidson scheme73

developed recently.65,67,68The Davidson algorithm consists of
a preconditioned version of the Lanczos method. This scheme
relies on the definition of a zero-order HamiltonianH0, easy to
use and to invert. The user gives a guess vector|V0〉, and the
Davidson scheme provides the energyER and the eigenstate
|ψR〉, which has the largest projection onto|V0〉. It has been
shown elsewhere65,68,74 that the Davidson scheme is more
efficient if the zero-order description of the initial guess vectors
is improved. This is realized by means of a prediagonalized
scheme described elsewhere68 and briefly recalled. The overall
basis setB is divided into two subspaces,B ) P x Q, P being
small enough to be directly diagonalized. Calculation of highly
excited states requires a specific prediagonalization in a subspace
P, denoted active space.P should contain all the zero-order
states that play an active role during the calculation of the
studied state or polyad of states. In this study, the active space
P is obtained by performing a preliminary Davidson calculation
in a small basis set whose dimension is limited by using some
drastic but realistic energy criteria (Emax

tot , Emax
1,3,4,5) and some

constraints (NR) on the allowedVR quantum numbers. In this
first fast calculation, the guess vector|V0〉 is the zero-order
description of the studied state. This preliminary Davidson
scheme gives an estimation of the studied eigenstate
|ψ R

est〉. The zero-order states associated with the largest contri-
butions in |ψ R

est〉 are retained in theP subspace. Then, the
diagonalization of the Hamiltonian in this active space provides
a new orthogonal basis set{|ui〉, i ) 1, ...,NP} for this subspace
P constituted by the eigenstates of the Hamiltonian. The
eigenstate|u1〉, which has the largest projection onto|V0〉, is
identified and is used as a guess vector in the following
Davidson procedure performed in the large primitive basis set
B ) P x Q:

(i) Diagonalization of the Hamiltonianin the {u1, ..., uM}
basis set. At the beginning of the procedure, this basis contains
only the guess vectoru1 obtained by the prediagonalization step.
M denotes the number of Davidson iterations performed.

(ii) Selection of the EigenstateΨM with the largest projection
onto u1. This eigenstate is the best description of the exact
eigenstate obtained afterM iterations. The eigenvalue associated
with ΨM is denotedEM.

(iii) Calculation of the Residual q) (H - EM)ΨM.
(iV) Determination of a New Vector uM+1.

1. If ||q|| < ε, we consider thatΨM is a converged eigenvector
of the Hamiltonian. It has been shown elsewhere65,68,74that ε
was an excellent indicator of the accuracy of the eigenvalue
and the eigenvector. Ifε is set to 10 cm-1, the eigenvalue is
obtained with an error smaller than 0.1 cm-1, while an ε

parameter set to 100 cm-1 gives the energy with an error of
about 1-2 cm-1. This value has been adopted to calculate highly
excited states because the error generated by this Davidson
scheme is smaller than the error generated by the inaccuracy of
the PES used to describe the system.

2. If ||q|| > ε, a new vectoruM+1 is generated. First, vector
q̃ ) (EM - H0)-1q is calculated. Then, a newuM+1 orthogo-

nalized with respect to previous vectors and normalized is
calculated:

(V) New DaVidson Iteration.The limitation of this Davidson
procedure comes from the core memory required to store the
M Davidson vectorsui. This imposes some constraints on the
maximum number of Davidson iterations, denotedMmax,
performed. To preclude such core memory problem, a restart
option is used. To profit from the initial Davidson scheme,Nrestart

eigenvectorsΨ j
M (j ) 1, ..., Nrestart) displaying the largest

projections onto the initialu1 are kept for the next Davidson
cycle. Consequently:

1. If M + 1 < Mmax, a new Davidson iteration can begin:M
) M + 1, go back to (i).

2. If M + 1 ) Mmax, a new Davidson cycle can begin:M )
Nrestart, go back to (i).

To give some practical information, the calculation of the
state|1, 2, 0, 0, 0, 4〉 mentioned previously has required an
active space containing about 2000 states and has been
determined by performing a preliminary Davidson calculation
in a small basis set containing 27 000 states. The final Davidson
scheme has been applied in a basis setB and a gridG containing
70 000 states and 700 000 points, respectively.Nmax andNrestart

have been set to 450 and 100 in this calculation, respectively.
The determination of the eigenvalue (9172 cm-1 of excitation
energy) and the eigenstate have required two cycles of the
Davidson scheme and a total of 771 iterations of the Davidson
scheme.

III. Analysis of the Accuracy of the Spectrum Obtained
with the Global PES

A comparison between the experimental data provided by
Crane et al.4 and the spectrum obtained by using the Davidson
scheme coupled with the Jacobi-Wilson method is presented
in this section. From the experimental point of view, dispersed
fluorescence and stimulated emission pumping spectra of jet
cooled DFCO from the 2162, 5164, 215162, and 5166 vibrational
states ofS1 have been obtained. Progressions are assigned
primarily to excitation in the Franck-Condon active modesν2,
ν5, andν6. Consequently, Crane et al. gave in Table 2 of ref 4
the energies and a proposition of assignment of a series of lines
up to 9000 cm-1 of energy excitation. We focus in the present
study on 48 lines of symmetryA′, but a similar work can be
done for the 23 lines of symmetryA′′. The lines provided by
experiment have been assigned by the following labels:4

The experimentalists considered that the spectrum is perturbed
by a 266 (ν2 ≈ 2ν6) and 233 (ν2 ≈ 2ν3) Fermi resonances as
well as a 3566 Darling-Dennisson (ν3 + ν5 ≈ 2ν6). We find
that the more important Fermi resonance that has to be
considered is the first one that couples the out-of-plane mode

uM+1 )

(1 - ∑
m)1

M

|um〉〈um|)q̃

|(1 - ∑
m)1

M

|um〉〈um|)q̃|

(3)

νi + (N26 - n)ν2 + 2nν6 (i ) 1, 3, 4),N26 )
0, 1, 2, 3, 4;n ) 0, ...,N26

N5ν5 + (N26 - n)ν2 + 2nν6 (N5 ) 1, 2, 3, 4),N26 )
0, 1, 2, 3, 4;n ) 0, ...,N26
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ν6 with the CO stretchν2. Consequently, a study of polyads of
coupled states has been performed: a polyad can be character-
ized by the quantum numberN26. The 48 energies observed by
the experiment belong to 30 different polyads of states. We have
calculated all the energies and the eigenstates that belong to
these 30 polyads of states: 84 eigenstates have been calculated.
The calculation of all these states will be used in Section IV to
analyze the structure of the spectrum and the efficiency of the
different resonances.

In the sophisticated and detailed experimental study per-
formed by Crane et al.,4 a fit of the experimental data has been
proposed. First, they tried to fit the spectrum by using a standard
Dunham-type expression:

This basic approach was not sufficient to fit all the experi-
mental data up to 9000 cm-1. Consequently, they have included
in the fit three coupling constants:k266, k233, andk3566. This
very simple model Hamiltonian was diagonalized for each
polyad of states coupled by these three constants. The deter-
mination of these 3 force constantsk266, k233, andk3566, the six
ωi (i ) 1, ..., 6) and the 19xij constants was based on the use
of a simulated annealing optimization routine.4 Figure 2
represents the error between the fitted and the experimental
spectrum (circles in Figure 2): the agreement is excellent. In

Table 2 and Figure 4 of Section IV, we compare the eigenstates
obtained either by this modelization (values provided in italics
in Table 2 and Figure 4) or by a 6D variational calculation. We
can now discuss the accuracy of the spectrum provided by the
global six-dimensional PES developed by Kato and co-work-
ers.75 This PES includes the dissociation pathway and was
constructed with the use of about 4000 ab initio potential
energies computed at the (RHF)/MP2 level. The aim of such a
sophisticated PES is to describe highly excited states of HFCO
or DFCO molecules. This PES has not been fitted to reproduce
the spectrum. It is the reason why it is crucial to compare the
experimental and calculated data to quantify the quality of this
global PES. Squares in Figure 2 reproduce the difference
between the numerical spectrum obtained with this PES and
the experimental data. One can mention that the error is mainly
generated by the inaccuracy of the PES because the error caused
by the Davidson scheme and the finite dimension of the working
basis set is significantly smaller (few cm-1) for highly excited
states. What is the major origin of the difference between
experimental and calculated spectra? Table 1 provides the error
generated by the PES for the fundamental transitions for theA′
modes and for the first overtone for theA′′ out-of-plane mode.
What is the consequence of this error (reproduced in column 4
of Table 1) on the calculation of highly excited states? To
answer to this question, a corrected value of the energy
associated to a given eigenstate (|Ψ〉 ) ∑V1,...,V6cV1,...,V6|V1, ...,V6〉)
has been estimated:

TABLE 2: Comparison between Experimental Values When They Are Available, Fitted Valued Using the 4D Model
Hamitonian Developed by Experimentalists (Values Provides in Italics in This Table), Calculated Ones Using the 6D Global
PES Developed by Kato and Co-workers, and Corrected Ones Taking into Account the Error Provided by the Global PES for
the Energies of the Fundamental Transitions

polyad of 3ν2 3ν2 + ν5 3ν2 + ν3 3ν2 + ν4 3ν2 + 2ν5 3ν2 + 3ν5 3ν2 + ν1

E4 exp orfita 5026 5681 5992 6089 6335 6990 7234
calcdb 5045 5695 6016 6094 6343 6990 7266
corrc 5021 5675 5976 6075 6325 6979 7224

(v 1
av,..., v6

av)d (0.2, 0.5, 0.0, (0.2, 0.5, 0.2, (0.2, 0.4, 1.1, (0.2, 0.5, 0.2, (0.2, 0.5, 0.2, (0.2, 0.5, 0.2, (1.1, 0.5, 0.2,
0.2, 0.0, 4.8) 0.1, 1.0, 4.7) 0.1, 0.0, 4.8) 1.1, 0.1, 4.6) 0.1, 2.0, 4.6) 0.2, 3.1, 4.5) 0.1, 0.0, 4.3)

(0.0, 0.3, 0.0, (0.0, 0.4, 0.1, (0.0, 0.3, 5, 1.1, (0.0, 0.4, 0.0, (0.0, 0.4, 0.1, (0.0, 0.4, 0.1, (1.0, 0.3, 0.1,
0.0, 0.0, 5.2) 0.0, 1.0, 5.1) 0.0, 0.1, 4.8) 1.0, 0.0, 5.2) 0.0, 2.1., 5.1) 0.0, 3.1, 4.9) 0.0, 0.0,5.2)

E3 exp orfita 5174 5825 6137 6234 6475 7124 7387
calcdb 5176 5823 6147 6224 6468 7111 7408
corrc 5172 5824 6132 6231 6477 7115 7389

(v 1
av,..., v6

av)d (0.1, 1.2, 0.1, (0.2, 1.2, 0.1, (0.2, 1.2, 1.1, (0.2, 1.2, 0.2, (0.2, 1.2, 0.2, (0.2, 1.2, 0.2, (1.0, 1.2, 0.2,
0.1, 0.0, 3.4) 0.1, 1.1, 3.2) 0.2, 0.1, 3.3) 1.2, 0.2, 3.0) 0.2, 2.1, 3.0) 0.4, 3.4, 2.6) 0.1, 0.0, 3.5)

(0.0, 1.1, 0.0, (0.0, 1.1, 0.0, (0.0, 1.1, 1.1, (0.0, 1.1, 0.0, (0.0, 1.1, 0.1, (0.0, 1.2, 0.1, (1.0, 1.1, 0.0,
0.0, 0.0, 3.7) 0.0, 1.0, 3.7) 0.0, 0.0, 3.6) 1.0, 0.0, 3.7) 0.0, 2.0, 3.6) 0.0, 3.1, 3.4) 0.0, 0.0, 3.8)

E2 exp orfita 5288 5934 6250 6344 6581 7228 7505
calcdb 5267 5910 6240 6314 6552 7194 7508
corrc 5291 5940 6251 6347 6588 7234 7516

(v 1
av,..., v6

av)d (0.1, 2.1, 0.1, (0.1, 2.1, 0.1, (0.1, 2.1, 1.1, (0.1, 2.1, 0.1, (0.1, 2.1, 0.1, (0.1, 2.0, 0.1, (0.9, 2.0, 0.3,
0.1, 0.0, 1.6) 0.1, 1.0, 1.5) 0.2, 0.0, 1.6) 1.2, 0.0, 1.3) 0.1, 2.0, 1.4) 0.1, 3.0, 1.3) 0.2, 0.2, 1.7)

(0.0, 2.0, 0.2, (0.0, 2.0, 0.0, (0.0, 2.0, 1.1, (0.0, 2.0, 0.1, (0.0, 2.0, 0.0, (0.0, 2.0, 0.0, (1.0, 1.9, 0.1,
0.0, 0.0, 2.0) 0.0, 1.0, 2.0) 0.0, 0.0, 2.0) 1.0, 0.0, 2.0) 0.0, 2.0, 1.9) 0.0, 3.0, 1.8) 0.0, 0.0, 2.1)

E1 exp orfita 5348 5993 6309 6401 6638 7283 7571
calcdb 5320 5963 6293 6371 6606 7249 7564
corrc 5343 5988 6303 6394 6632 7276 7575

(v 1
av,..., v6

av)d (0.1, 2.1, 0.1, (0.1, 2.0, 0.1, (0.1, 2.0, 1.0, (0.1, 1.9, 0.1, (0.1, 1.9, 0.1, (0.1, 1.8, 0.1, (0.9, 2.1, 0.1,
0.1, 0.0, 1.7) 0.1, 1.0, 1.9) 0.2, 0.0, 1.7) 1.1, 0.0, 2.0) 0.1, 2.0, 2.1) 0.1, 3.0, 2.2) 0.2, 0.0, 1.7)

(0.0, 2.5, 0.0, (0.0, 2.5, 0.0, (0.0, 2.5, 1.1, (0.0, 2.4, 0.0, (0.0, 2.4, 0.0, (0.0, 2.3, 0.0, (1.0, 2.6, 0.0,
0.0, 0.0, 0.9) 0.0, 1.0, 1.0) 0.0, 0.0, 0.9) 1.0, 0.0, 1.0) 0.0, 2.0, 1.2) 0.0, 3.0, 1.3) 0.0, 0.0, 0.7)

a When experimental values are not available, the values provided by the very simple experimentalist modelization developed in ref 4 and
summarized in Section III (near eq 4) are given.b Calculated values using the global PES.72 c Corrected values using eq 5.d Average quantum
number obtained either with the global PES and the Davidson scheme or in italics with the 4D model Hamiltonian developed by Moore and
co-workers.4

E(V1, ...,V6) ) ∑
i)1

6

ωiVi + ∑
i)1

6

∑
j)i

6

xijViVj (4)
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(1) First, the average quantum number in modeQi given by
V i

av ) ∑V1,...,V6Vi|cV1,...,V6|2 is calculated to estimate the real role
played by the different normal modesQi in |Ψ〉.

(2) Second, the corrected value of the energy is given by:

The∆νi (i ) 1, ..., 6) are fitted to obtainEcorr ) Eexp for theA′
fundamental transitions and for the first out-of-plane overtone.
The values of∆νi (i ) 1, ..., 6) are provided in column 5 of
Table 1. Columns 4 and 5 are different because of the existence
of Fermi resonances, which efficiently couple modes even for
these low excited states.

Stars in Figure 2 provides the corrected values of the energies
up to 9000 cm-1. This figure shows that there is a satisfactory
agreement between the experimental data and the corrected ones.
This very simple approach allows to improve the energies
provided by the variational calculation and requires only the
knowledge of the fundamentalA′ transition and the first out-
of-plane overtone. Consequently, this approach is predictive.
This section establishes that the PES developed by Kato and
co-workers gives a very good description of the intermode
couplings in this molecule even for highly excited-state while
the spectrum is strongly perturbed by resonances. The error on
highly excited states can be significantly reduced by taking into
account the error generated on the calculation of the fundamental
A′ transitions and the first out-of-plane overtone.

IV. Analysis of the Structure of the Spectrum Generated
by an Efficient Fermi Resonance

This section is dedicated to the analysis of the structure of
DFCO spectrum and the determination of the role played by
the different resonances. In fact, one of the aims of the
experimental study was to compare the dynamical behaviors
of HFCO and DFCO. HFCO is an excellent prototype to study
mode specificity in unimolecular dissociation because the out-
of-plane mode (ν6) is weakly coupled to the reaction coordinate
that lies entirely in the molecular plane. HFCO has been the
subject of intensive experimental studies conducted by Moore
and co-workers3,76,77and numerical simulations.32,74,75,78,79The
aim of these studies was to analyze the energy flow through a
HFCO molecule whose out-of-plane was highly excited. Then,
Moore and co-workers4,5 focus on DFCO because of the

existence of resonances that might couple the out-of-plane mode
with in-plane modes. The experiments seem to predict that the
IVR dynamics in DFCO is very different from the very strong
mode-specific IVR dynamic in HFCO. In particular, the
quasistability of large amplitude out-of-plane vibrations in
HFCO is destroyed in DFCO, probably due to a 266 resonance,
which is not efficient in HFCO. Our group has investigated the
IVR in DFCO33 whose out-of-plane is highly excited by using
the MCTDH code24-26 to propagate the initial wave packet. In
agreement with the experimental findings, our study proves that
the IVR dynamics of DFCO are in marked contrast to the
dynamic of HFCO. Above all, the IVR in DFCO is affected by
the presence of the 266 resonance. This resonance seems to be
the main reason that explains why the experimental spectra is
perturbed and more “congested” above the dissociation. How-
ever, the theoretical study shows that the CO stretch itself (mode
2) is not coupled to the other in-plane modes. Consequently,
the system remains mode specific. The present analysis of the
spectrum up to 9000 cm-1 will help to understand the very
original dynamical behavior of DFCO. First, the role played
by the modes 1, 3, 4, and 5 has been quantified: for the 84
bands calculated, the average quantum numbersV i

av (i ) 1, 3,
4, 5) have been calculated and represented in Figure 3. It is
remarkable to note that the average quantum numberV i

av is
very similar to the integer quantum numberVi proposed in the
label, i.e.,V i

av = 0 or 1for i ) 1, 3, 4 andV5
av = 0, 1, 2, 3, 4.

That establishes that there is no efficient coupling between these
modes and modes 2 and 6. It shows that modes 2 and 6 are
really decoupled to these modes. The experimental study4,5

predicts that 233 and 3566 resonances should be also efficient.
In fact, the effect of these resonances is not significative. For
instance, theV3

av is very small (less than 0.3) in themν2

overtones (m) 1, ..., 5). Figure 4 represents the general structure
of a polyad of states characterized byN26 ) 1, 2, 3, 4. We
have reproduced in Figure 4 the values obtained for the corrected
energies and for the couple of average quantum numbers (V2

av,
V6

av) for the polyads of states that are generated by the mixing
of the following (N26 + 1) zero-order states:{|(N26 - n)ν2 +
2nν6〉0; n ) 0, ...,N26} . The values written in italics are provided
by the 4D very simple modelization developed by experimental-
ists. First, in agreement with experimental predictions, an
increase of the coupling between modes 2 and 6 is observed
when the excitation energy increases. While the weight of mode
6 is larger in the low-energy bands of a given polyad, an intense
mixing of modes 2 and 6 is predicted in the energy levels (E1,
E2) for N26 ) 3 and energy levels (E1, E3) for N26 ) 4. It is
very interesting to be able to label these bands by the average

Figure 2. Difference between experimental data with the fitted one
by Crane et al. (circles) or using the variational calculation using the
Kato’s PES (squares) or the corrected energy according to eq 5. All
the energies are expressed in cm-1.

Ecorr ) Ecalcd+ ∑
i)1

6

∆νiV i
av (5)

Figure 3. Average quantum number for modes 1, 3, 4, and 5 for all
the calculated states.
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quantum number because it is totally impossible to identify
theses bands by a unique zero-order state. We can now compare
the values provided by the variational calculations and the 4D
model proposed by experimentalists. The very original evolution
of V i

av (i ) 2, 6) in a given polyad is not exactly reproduced by
the 4D model, which totally neglects mode 1 and 4. The 6D
variational calculation shows the role played by the in-plane
modes: small but not totally negligible. They are responsible
of the evolution of theV i

av (i ) 2, 6) in a given polyad. We
focus now on the polyads generated by the mixing of states
such that{|νi + (N26 - n)ν2 + 2nν6〉0, n ) 0, ...,N26} for N26

)3 andi ) 1, 3, 4 or{|N5ν5 + (N26 - n)ν2 + 2nν6〉0, n ) 0,
..., N26} for N5 ) 1, 2, 3 andN26 ) 3. How modified is the
structure of the spectrum of these polyads of states by the fact
that an in-plane mode 1 or 3 or 4 or 5 is excited? Figure 5
provides the splittings (∆31, ∆32, ∆33 defined in Figure 4)
calculated for the polyads of states characterized byN26 ) 3.
This figure shows that the splittings are not significantly affected
by the excitation of modes 1, 3, 4, 5. The average quantum
numbers in modes 2 and 6 are reproduced in Figures 6 and 7
for these bands. Table 2 gives the energies (experimental ones,
variational ones and corrected ones) and the average quantum
numbers (V1

av, ..., V6
av) obtained either by the 6D variational

calculation or by the 4D modelization proposed by Moore and

co-workers. It is remarkable to note how these quantities are
not affected by the excitation of the modes 1, 3, 4, 5 even when
mode 5 is excited by 3 quanta. Figures 5-7 and Table 2 focus
on theN26 ) 3 polyad, but similar trends are observed for the
other polyads (N26 ) 1, 2, 3, 4). This analysis demonstrates
how the coupling scheme between modes 2 and 6 is independant
of the excitation of the other modes. Its explains why the IVR
predicted in DFCO is mode selective: the energy initially
deposited in mode 6 is transferred in a reversible way in modes
2 and 6. However, the transfer to mode 1, 3, 4, and 5 is slow
because the couplings are not efficient.

V. Conclusions

First, this study has shown that the Davidson scheme coupled
to the JW parametrization and a specific prediagonalization step
is able to provide highly excited states even when strong and
efficient Fermi resonances exist. Up to now, this method has
been used either in HFCO where the intermode couplings are
small or in H2CO where the state density is smaller. Second,
the comparison between the experimental and calculated spectra
has established the great quality of the global PES developed
by Kato and co-workers. We show also that the energies
provided by this PES can be easily corrected by taking into
account the error observed for the fundamental frequencies. The
PES, used in a recent dynamical study,33 reproduces correctly
the intermode couplings in DFCO. Third, the analysis of the
eigenstates up to 9000 cm-1 of excitation has demonstrated that
the modes 2 and 6 are decoupled to the other modes, while the

Figure 4. Splitting obtained for the polyads generated by the coupling
of the states{ |(N26 - n)ν2 + 2nν6〉o, n ) 0, ...,N26} with N26 ) 1, 2,
3, 4. For each corrected energy (expressed in cm-1), the average
quantum numbers (V 2

av, V 6
av) are provided. The values written in italics

are obtained with the 4D modelization developed by the experimental-
ists, while the other values are provided by the 6D variational
calculation.

Figure 5. Splitting for N26 ) 3 for different polyads generated by the
coupling of{|(νi + N26 - n)ν2 + 2nν6〉o, n ) 0, ...,N26} with i ) 1, 3,
4 or {N5ν5 + |(N26 - n)ν2 + 2nν6〉o, n ) 0, ...,N26} with N5 ) 1, 2, 3.

Figure 6. Average quantum number for mode 2 for polyads carac-
terized byN26 ) 3.

Figure 7. Average quantum number for mode 6 for polyads carac-
terized byN26 ) 3.
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experimental studies suggest that some other resonances might
be efficient to couple mode 2 with mode 3, for instance. In
fact, such a Fermi resonance is not efficient up to 9000 cm-1.
This analysis helps to understand the IVR study performed
recently.32 Finally, we are planning to implement the dipole
momenta as well as the overall rotation of the molecule to carry
out simulations in the presence of a time-dependent field. We
will compare the dynamical behavior of HFCO and DFCO
excited by a laser pulse and will estimate the influence of this
Fermi resonance to the dynamical behavior of DFCO.
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